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should be increased but, owing to the decrease in 
the magnitude of the density gradients that stabi­
lize the boundary, more careful control of the tem­
perature would be required. Since it appears es­
sential to have homogeneous layers of solution of 
appreciable thickness above and below the bound­
ary, the period of observation can only be extended 
by increasing the height of the cell. Although the 
fringes are compressed as diffusion proceeds the re­
solving power of the available photographic emul­
sions17 is such that this is not a limiting factor. 

It is a pleasure to acknowledge my indebtedness 
to D. A. Maclnnes of these laboratories for his 
care in the review of this manuscript and to Gerson 
Kegeles of the University of Wisconsin for clarify­
ing correspondence throughout the course of the 
investigation. 

(17) "Photographic Plates for Use in Spectroscopy and, As­
tronomy," Eastman Kodak Co., 5th edition, 1946, Rochester, N. Y. 

Introduction 
In 1880 Gouy1 discovered a new interference 

phenomenon produced from a single wave front 
which had been distorted on passage through a 
column of liquid containing a diffusion boundary. 
Gouy gave a qualitative explanation of his ob­
servation, but he published no photographs, and 
presented no mathematical theory. In a recent 
review dealing with the subject of diffusion, Longs-
worth2 gave an account of this phenomenon and 
published a photograph that he had taken of the 
interference fringes. This review stimulated the 
development of the quantitative theory to be 
presented in this paper, relating the space and 
intensity in the interference fringe system to the 
diffusion coefficient. In the report accompanying 
this one, L. G. Longsworth3 presents an experi­
mental verification of this theory, as well as his 
experimental development of the interference 
phenomenon into a precision method for the study 
of diffusion. 

A brief qualitative description of the original ex­
periment1 is repeated here, with the aid of Fig. 1, 
in order to introduce the mathematical treatment. 
To make his observations, Gouy collimated the 
light from an illuminated horizontal slit and, after 
passing it through a diffusing salt boundary, 
brought it to focus with a telescope. In the il­
luminated rectangle at the focal plane of the tel­
escope objective, several decades of fringes could 

(*) Present address: Biochemistry Section, National Cancer 
Institute, Bethesda 14, Md. 

(1) Gouy, Compt. rend., 90, 307 (1880). 
(2) Longsworth, Ann. N. Y. Acad. Sci., 46, 211 (1945). 
(3) Longsworth, T H I S JOURNAL, 69, 2510 (1947). 

Summary 
In an accompanying paper Kegeles and Gost­

ing have developed the theory of the spacing of 
the interference fringes that are formed in the 
focal plane of a lens when an illuminated horizon­
tal slit serves as the light source and a diffusing 
boundary is placed in the path of the light. In 
the present paper this theory is confirmed experi­
mentally and a method is suggested for the use of 
the fringes in the evaluation of diffusion coeffi­
cients. Moreover, results for the diffusion, at 0.5°, 
of aqueous potassium chloride solutions in the 
Lamm cell are presented and compared with the 
Onsager-Fuoss theory. The difficulties that were 
encountered in the use of this cell for the study of 
proteins, and in the use of the Tiselius electro­
phoresis cell as a diffusion cell for both salts and 
proteins, are also reported. 
NEW YORK, N. Y. RECEIVED MARCH 18, 1947 

be counted, and the fringe system showed pe­
culiarities foreign to those produced by multiple 
slits. The originally plane wave front on leaving 
the diffusion cell takes the form, in projection 
onto the plane of the paper (Fig. 1), of the re­
fractive index function in the column. For ideal 
diffusion, this distorted wave front is symmetrical 
about the inflection point corresponding to the 
level of the maximum refractive index gradient. 
Because of this symmetry, two normals from any 
given level Y in the focal plane may be drawn to 
the wave front, at points denoted X and X'. This 
means, according to geometrical optics, that rays 
passing through two symmetrical levels in the dif­
fusion column are brought to a focus together a 
distance Y below the undeviated slit image. Gouy 
pointed out that the disturbance at Y could be 
calculated as the superposition of the disturbances 
originating in the wave front at X and X', with a 
phase difference determined by the difference in 
path lengths from Y to the wave front at X and 
X', respectively. The theory of the phenomenon 
derived on this basis is not in complete accord 
with experiment,3 however, and according to wave 
optics it is necessary to take account of the dis­
turbances arising at all other points in the wave 
front which must also contribute something to the 
intensity at Y. In the calculations to be pre­
sented, the treatment of the phenomenon will be 
undertaken from these two different starting as­
sumptions, and the results will be compared. As 
the assumption of geometrical focussing forms the 
basis of the refractometric optical methods which 
are applied to studies of the molecular kinetic 
properties of dissolved solutes, this comparison 
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will also constitute a critique of such optical 
methods. 

com'mafci' 

Fig. 1.—The Gouy interference phenomenon. 

Elementary Theory 
In order to obtain a physical picture upon 

which to base a more complete treatment, a first 
order calculation of the magnitude of the path 
differences for a convergent light optical system 
may be made with the aid of Fig. 2. Here it may 
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Fig. 2.—Approximate diagram for convergent light. 

be seen that the difference in path for two rays 
entering the cell simultaneously and coming to­
gether at a point below the undeviated slit image 
may be broken into two parts. The first part of 
this path difference arises because the rays trav­
erse media of different refractive index n and n' in 
the solution. This solution path difference, for 
rays which are horizontal at the beginning of their 
paths through a cell of thickness a, has the mag­
nitude 

P, - P', = a(n - «') 
The second part of the path difference arises be­
cause the rays on leaving the cell travel different 
distances to meet at a level below the slit image. 
As a first approximation, the light paths may be 
treated as if all the bending takes place in the 
middle (a/2 plane) of the cell,4 which is separated 
from the slit image plane by the optical distance b. 
The air path difference from the middle of the 
cell to the level Y, Fig. 2, along these two sym­
metrical rays has the magnitude 

P„ - Pi = -2xY/b 
Adding these two portions, we obtain a total 
path difference of the order 

(4) Wiener, Ann. Physik, 49, 105 (1893). 

p - p> = u(« _ „') - 2x7/6 

Several not entirely consistent approximations 
have been made in order to obtain this relation 
for the path difference. In the first place, the 
light was assumed to be horizontal on entering the 
cell, but the inconsistent assumption was then 
made that on leaving the cell it converges to a 
focus. In the second place, it might appear that 
in summing the path differences, the second half 
of the cell has been counted twice. In the follow­
ing development, a more rigorous treatment will 
be shown to lead to the same result. 

Geometrical Development 

In the present treatment, care will be taken to 
obtain the total path difference of two co-focussing 
rays by adding the path difference caused by trav­
erse of different layers of solution to the difference 
in path lengths of the rays from the plane where 
they leave the solution to the slit image plane. 
Account will be taken of the convergence of light, 
as well as the curvature of the light paths in the 
solution. As a starting point for the calculation of 
solution paths, Snell's law is chosen. 

Fig. 3.—Details of the solution paths. 

From Fig. 3 it is seen that the element of path 
length dS in solution is given by 

dS = V l + (d*/d;y)! Ay 

If 9 is the inclination of the lower ray with the 
horizontal 

dx/dy = tan 6, and dS — sec 0 dy 

But since planes of constant refractive index n are 
horizontal, Snell's law takes the form 

n cos 0 = const. 

Differentiation of this, equation with respect to y 
and substitution of tan 6 for dx/dy, gives 

de/dy = (l/n)dn/dx 

If it is now assumed that the curvature of the 
path is sufficiently small so that both n and dn/dx 
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are constant over the path,5 , 6 we obtain by inte­
gration 

0 = 0o + (y/n) dn/dx 
where 90 is the value of 6 for y = 0. The element 
of optical pa th length is 

n dS = « sec S dy 

and expansion in series for small values of 6, and 
integration of this expression from y = 0, the en­
trance plane of the ray into solution to y = a, the 
exit plane of the ray from solution results in the 
optical pa th length 

P1= ) n dS = an + and*/2 + (a2/2)0od»/dx + 
Jy-O 

(a«/6n)(d»/d*)« 

A similar expression obtains for the optical pa th 
length P8 ' for the upper co-focussing ray, where 
dn/dx is the same in both cases, as the gradient 
alone is assumed responsible for the light bending. 
The expression for the pa th difference within the 
solution then becomes 
P8 - P8' = a(n - «') + (a/2)(nil - n'6'l) + 

(a72)(dn/d*)(0o - d'0) + (a*/&)(dn/dx)\l/n - 1/n') 

Here d0 is taken as a negative angle and dl as a 
positive angle. If the center of symmetry of the 
refractive index gradient function lies on the op­
tical axis, the inclination in air an and «o of the 
two rays before entering the cell is given by the 
symmetry relattions 

— ao = — n8o = a0 = n'60 

and the solution pa th difference becomes 

P8 - Pi = a(n - »'){(! - a'l/2nn' -
(a*/6)(dn/dx)*(l/nn')} + (a2/2)(dn/d*)(0„ - O (D 

If a ~ 2.5 cm., n - n' ~ 0.002, n ~ 1.33, a£ ~ 
0.02, and dn/dx ~ 0.003, which would give the 
second order terms in equation (1) rather high 
values compared to those normally encountered, 
the second term in the braces is of the order 1O -4 , 
the third term in the braces is of the order 5(10) ~6, 
a(n — «') is 5(1O) - 3 , and the final term is of the 
order 3(10) ~4. Hence, within about one par t in 
10,000 the solution pa th difference becomes 

P,- PL = a(n - »') + (o»/2)(d»/d*)(e„ - 8',) (2) 

Here the second term takes into account the con­
vergence of the light. Under the present assump-

Fig. 4.—Details of the air paths. 

(5) Lamm, Nova Ada Reg. Soc. Set, Ufiala, Serin IV, 10, No. 8 
(1937). 

(6) Svem.on. KoHaid-Z., «0, 141 (1940), 

tions, terms involving differences in curvature be­
tween the two paths have been found to be neg­
ligibly small. 

The rays have been followed from the entrance 
plane (y = 0) to the exit plane (y = a) of the solu­
tion. I t is necessary now to add their path dif­
ference which arises as they traverse the distance 
from the exit plane of the cell to the slit image 
plane. This air pa th difference P a — PL is the 
difference in hypotenuse of the two right triangles 
(Fig. 4) whose common base b' extends from the 
y = a plane a t the end of the solution paths to the 
plane of the undeviated slit image. The expres­
sion is 

P*-PL= Vb"+ (Y- \X\)* - V*'2 + ( F + |X'|)2 

For Y and X small compared to b' this simplifies 
to 

P» - PL ( W ) ( | * | + \X'\) + 
(1/26')(Z2 - X'2) (3) 

The difference |X | — \xe\ between magnitudes 
of the actual coordinate of the lower ray a t the y — 
a plane and the value it would have if not for the 
curvature of the light pa th in the solution is given 
by integrating dx = 9 dy, or 

1*1 - ke| = I S dy - ado = I [B0 + 
./o J o 

(y/n) (dn/dx)} dy — aBn 
= (a2/2n) dn/dx 

The corresponding expression for the upper ray 
in the figure is (a2/2n')dn/dx, bu t for all practical 
purposes these terms are identical and we can 
write 

\X'\ - \xi\ = - (aV2n)dn/dx 

In terms of \xe\ and |xc| equation (3) then be­
comes 

Pa - PL = - { ( W + \xi\)/b']{Y-
(a2/2n)dn/dx} + (l/26')(xj - ^ 2 ) (4) 

If the center of symmetry of the boundary lies on 
the optical axis, the last- term disappears. I t is 
noted from Fig. 4 tha t 

Y' = Y - (a2/2n)dn/dx 
Also 

0» — 0o = I (l/n)(dn/dx)dy or as — an = adn/dx 
Jo 

and Y' = a(dn/dx)b' for small angles. Hence 
Y = a(d»/d*)(6' + a/2n) 

The new optical distance b is now defined by the 
relation b = b' + a/2n, and in terms of b 

Y = ab dn/dx (5) 

as given originally by Wiener.4 I t is noted t h a t by 
this definition b becomes, for convergent light, 
the optical distance from the plane of the undevi­
ated slit image to the geometrical center of the 
diffusion cell.7 Equat ion (4) can now be re-written 

P . - Pi- - ( W + M) Y/b 
(7) Compare Svensson, Arkiv. K*mi, Mineral., Geol.t SSA, No. 10. 

84 (1046). 



Oct., 1947 T H E O R Y OF I N T E R F E R E N C E M E T H O D FOR STUDY OF D I F F U S I O N 2519 

The heights |xe | and |*e| a t the end of the cell 
{y = a) can be expressed in terms of the heights 

which the rays would have a t 
the center of the cell (y = a/2), Fig. 4, if all the 
bending took place in this plane 

|*.| = x + (a/2) ft, 
Kl = x - (a/2)fl0' 

Here again do is taken as a negative angle and do 
as a positive angle, while x is taken as always 
positive. In terms of x, the air pa th difference 
becomes, finally 

P . - PL = -2xY/b - {a/2b)Y{6, - A0
-) 

= -2axdn/Ax - (a2/2)(d»/dx)(0o - »o) (6) 

Here the second term is due to the convergence of 
the light. 

The total pa th difference is obtained by addi­
tion of equations (2) and (6) 

P - P' = a(n - V) - 2xY/b (7) 

with the restrictions t h a t b is measured for con­
vergent light to the center of the diffusion cell, and 
x is specifically defined as the height which the 
ray would have a t the center of the cell if all the 
light bending occurred in this plane. Under these 
conditions, the first order convergence error van­
ishes for convergent light, while the errors due to 
curvature of the light pa th are very small. 

While equation (7) is not completely rigorous 
for skew boundaries, it is general for any symmet­
rical refractive index gradient curve, and need 
not be restricted to apply to ideal diffusion. A 
general symmetrical curve may be t reated if the 
refractive increment function is represented by 

n - «0 = ((». - HO)/2|{1 + F(*)} 

Here F(x) = -F(-x), and - 1 < F O ) < 1 for 
— oo < x < oo. In this case equation (7) becomes 

P - P' = a(n. - »o){F(*) - *F'(x)J 

while the corresponding displacement in the slit 
image plane is 

Y = {ab(n, - »0)/2)F'(*) 

Of particular practical importance is the case of 
ideal diffusion. 

The type of diffusion experiment to be treated 
now is t ha t in which an infinitely long column of 
solvent of refractive index M0 is superimposed upon 
an infinitely long column of solution of refractive 
index ns containing a single solute. If the diffu­
sion is ideal and the refractive index increment 
function is proportional to the solute concentra­
tion, this function is given by the solution8 of 
Fick's second law9 of diffusion as 

n - «0 = Kn, - «o)/2! ] 1 + (2/V*) C e _ ( 3 ! d ^ | (8> 

where the "reduced height" z is defined by 

z = x/2VSt (9) 

Here D is the diffusion coefficient, t is the time, 
and x and z are measured positive downward. 

(8) Stefan, Sillier. Akad. Wiss. Wien, AbI. II, 79, 161 (1879). 
(9) Fick, Pogg. Ann., 94, 59 (1865). 

The differential form of this equation, given b y 
Wiener,4 is 

dn/dx = { ( « . - na)/2VrDi]e~z"- (10) 

Combination of equation (8) for symmetrical 
levels around the boundary center with the ex­
pression (7) for the pa th difference gives 

P - P' = a{n. - «0)(2/-s/?) ) e-"2 d/3 - 2xY/b 

(H) 
or by equations (5), (9) and (10) 

P - P' = o(», - »0)f(a) 

where the function f (2) is defined by 

f(«) = j ( 2 / V r ) £ e-?* W - (2 /VS)M-"! (12) 

The Interference Conditions.—If the intensi ty 
contr ibutions from only those two rays which 
should focus together a t Y by the geometrical 
t r ea tmen t are considered, then according to 
wave optics, construct ive interference will ob­
tain for 

a(n, - »0)f(«j) = JX (13) 

and destructive interference will obtain for 

a(». - »o)f(aj) = (j + 1/2)X (14) 

where X is the wave length of the light used, j is an 
integer equal to 0, 1, 2, . . ., and Zj is the "reduced 
height" in the cell corresponding to the fringe 
numbered j . Moreover, according to equations (5) 
and (10), the displacement below the undeviated 
slit image of the fringe numbered j is given by 

Y1 = [ab{n, - th)/2V*~5i\e-'t (15) 

For the case of parallel light equations (13) and 
(14) are applicable with approximately the same 
validity, while equation (15) applies provided t ha t 
b is measured from the photographic plate to the 
principal plane of the nearer schlieren lens.6 

From the definition of the pa th difference func­
tion (equation 12), it is noted t ha t f(z) = 0 for 
the center of the diffusion boundary a t z = 0, and, 
from equation (15), the lowest maximum, or mini­
mum, must thus be defined by j = 0. As z in­
creases indefinitely, on the other hand, f(z) ap­
proaches unity, and the largest integer for con­
structive interference fringes, which is here de­
noted by m, is given by 

a{n, — M0) > mh (16) 

For a given experiment the integral number, m + 
1, of mathematically possible maxima in the pa t ­
tern should thus be determined solely by the op­
tical and physical constants of the experiment in 
relation (16), and the diffusion column itself 
should constitute an interference refractometer. 

We have now expressed as an explicit function 
of the single variable z bo th the interference con­
ditions for the fringe, numbered j (equations (13) 
and (14)), and the displacement of this fringe be­
low the undeviated slit image (equation (15)). 
Knowledge of the fringe number and the factor 
a{ns — Mo)/X permits the evaluation of the pa th 
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difference function f(zj) and hence the quantity 
e~zL Combination of e~s> with the fringe dis­
placement Yj, the time, and the known constants of 
equation (15) then should give a value of the dif­
fusion coefficient, D, independently from each 
fringe. 

The path difference function f (2) as defined by 
equation (12) has been computed for a large num­
ber of z values, and is tabulated against the quan­
tity e~z> in Table I. The practical utilization of 
this table for the evaluation of the diffusion ex­
periments is outlined in the companion paper.3 • 

TABLE I0 

T H E PATH DIFFERENCE FUNCTION f(z) (EQUATION (12)) 

f(s) e~z" f(a) e~z2 f(a) «~ s 2 

0.00000 1.00000 0.25853 0.53574 0.776S3 0.11187 
.00054 0.99193 .28147 .51048 .79825 .09922 
.00303 .97473 .30498 .48554 .81335 .09049 
.00587 .96079 .32895 .46098 .82769 .08238 
.01005 .94403 .35329 .43687 .84121 .07486 
.01576 .92459 .37790 .41329 .85396 .06971 
.02116 .90837 .40270 .39028 .86595 .06149 
.02759 .89083 .42759 .36787 .87718 .05558 
.03513 .87206 .45248 .34614 .88770 .05014 
.04377 .85214 .47729 .32510 .89752 .04515 
.05360 .83118 .50192 .30479 .90664 .04060 
.06460 .80928 .52630 .28524 .91512 .03643 
.07678 .78655 .55034 .26646 .92299 .03263 
,09016 .76307 .57399 .24848 .93027 .02917 
.10471 .7389G .59717 .23129 .93697 .02604 
.12042 .71433 .61983 .21489 .94314 .02320 
.13723 .68929 .64189 .19931 .94880 .02063 
.15513 .66392 .66334 .18451 .95398 .01832 
.17404 .63833 .68411 .17052 .98247 .00633 
.19391 .61262 .70417 .15730 .99414 .00193 
.21466 .58690 .72977 .14086 .99956 .00012 
.23623 .56125 .75401 - .12573 1.00000 .00000 

° Compiled with the aid of "Tables of Probability Func­
t ions ," Vol. I , Federal Works Agency, Works Progress 
Administration, City of New York (Sponsored by Natl . 
Bureau of Standards), 1941. 

Wave Optical Theory 
It is shown in the companion paper3 that the 

theory presented above is not in complete accord 
with experiment. In addition to the light coming 
from the two points X and X' predicted by geo­
metrical optics, all other points such as Xi and 
Xi in the wave front (Fig. 5) also contribute 
something to the observed intensity at Y. The 
wave optical relationship which sums the ampli­

tude contributions over the whole length of the 
wave front in the plane of the paper is the in­
tegral equation obtained from Kirchoff's general 
theory of diffraction10 

4>Y = K\ fH COS(2TT/X) (P - P0)IdI -

i \ sin(27r/X)(P - P0) dll (17) 

Here 4>Y is the amplitude at the level Y corre­
sponding to the observed intensity, K is a con­
stant, —H and H are the distances from the center 
to the edges of the wave front, dl is the element of 
distance along the wave front, i is \/—l, and P — 
P0 is the difference between the path from Y to 
any level x in the wave front, and the path from Y 
to the center of symmetry O of the wave front. 

With a symmetrical wave front such as is being 
considered here, there is an x' value above O 
equal to — x for every x value below O such that 
- [ P - Po]x' = { P - Po]x = 1/2(P - P') for 
any chosen value of Y. The path' difference P — 
P' in general form is obtained from equation (11), 
where Y is now taken as an independently variable 
parameter. Since P — P ' is an odd function of 
x, the amplitude function becomes 

4>y — K I cos (WX)(P - P') dx = 
J-H 

Cx = H 
K 

Jx = O 

cos v dz (18) 

as dl is practically identical with dx and the in­
tegral of the sine function vanishes. Here v is de­
fined as (7r/\)(P — P'). If v is plotted against z, 
the maximum in the curve, denoted by coordi­
nates (vm, zm), occurs for the condition 

Ym = {ab(n, - m)/2VrSi]e-'m (19) 

This relation has the same form as the equation 
(15) predicted in part by geometrical optics. 
The maximum value which Ym can have, denoted 
by Ct, is then 

C, = ab(n, - n0)/2VvDi (20) 

which is the value predicted by geometrical optics 
for the displacement at the plate of the most down­
ward deflected light. From equations (9) and 
(11), v may now be written in terms of Ct 

v = (x/X )a(nB — no) ] (2/Vr) >r•- S2 d/3 

(2/y/r)(Y/CC)z (21) 

Fig. 5.—Wave front contributing to the amplitude. 

Figure 6 shows plots of v/ir versus z for various ar­
bitrarily chosen constant values of Y/Ct and the 
assumed data: a — 2.500 cm., ns — n0 = 0.001860, 
X = 5.461 (10) -5 cm. In order to evaluate the 
cosine integral of this complicated function, ap­
proximate curve fitting methods will be chosen 
to obtain the integral in forms which have been 
tabulated. Those curves in Fig. 6 which represent 

(10) Slater and Frank, "Introduction to Theoretical Physics," 
McGraw-Hill Book Co., New York, 1933, p. 311; Joos, "Theoretical 
Physics," G. IC. Stechert and Co., New York, 1934, p. 303. 
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- 240 

1 2 3 4 5 
Reduced height, z. 

Fig. 0.—Phase difference v/v for arbitrarily chosen values 

of Y/Ct. 

the central portion of the fringe system may be ap­
proximated by parabolas in the neighborhood of 
their maxima, and it is important to note that this 
region of the curves offers the greatest contribu­
tion to the cosine integrals. These parabolas will 
be made to fit the actual curves at (0, 0) and (z/m, 
Sm) so that 

V — Vm = — k{z — Zm)2 

and 

This results in a transformation of equation (18) to 

4>Y = 4JT y/Dt cos vm I C O S { ^ m 

(z - zmy/zm\ dz + 

Ca 

sin vm I sin \vm(z — z m ) V z m ) d z 
Jx = O 

In order to put this in the form of Fresnel inte­
grals,11 a change of variable is made by defining 

Vm{z — Zm)2Am = TM2/2 

and 
<t>Y = 

S 4KVDt(Zm/V'2vm/jr) -< cos vm I 
( Jx = O 

•I SlH I'm 

cos (iraV2)d« + 

X = H 

sin (7r«V2)dM 

To evaluate the integrals conveniently, it is now 
desirable to integrate from x = 0 t o x = Cn1OrM = 

(11) Fresnel, "Oeuvres," Vol. I, Paris, 1866, p. 247 ff.; Jahnke 
and Emde, "Tables of Functions," Dover Publications, New York, 
N. Y., 1945. 

0.2 0.4 0.6 0.8 
Relative intensity. 

Fig. 7.—Intensity diagram for representative diffusion 
boundary. Higher intensity curve from Fresnel integrals, 
lower intensity curve from Airy integrals. 

— V^Pm/ir to u = en, which will neglect any edge 
effects of the ends of the cell. In this case, since 
both integrands are even functions 

0y = <±KV~Dl(zm/V2vm/ir) [ {1/2 + C(V2vm/w) } cos va + 

{1/2 + S ( V 2 w V ) 1 sin »m] (22) 

where C(s/2vm/ir) and S(\/2vm/Tr) are the Fresnel 
integrals11 

V2vm/x . fx/2l>m/* . . . . . . . 
cos (irM s /2)d« a n d I sin (5r« z /2)d« 

Jo 
respectively. The intensity / is proportional to 
4>Y, and Fig. 7 gives a diagram of the intensities 
calculated with equation (22) from the data used 
for Fig. 6. For even fairly small values of vm, it 
may be shown that the minima and maxima of in­
tensity may be accurately obtained by writing 
equation (22) in the approximate form 

4>Y = 4K\/rDi(zm/\Z2vm/v) (cos vm + sin vm) 

T h e i n t e n s i t y m i n i m a a r e g i v e n b y cos vm + 
s in Vm — 0 o r vm = (J + 3 / 4 ) TT. S ince v is def ined 

X 



2522 G E R S O N K E G E L E S AND L O U I S J . GOSTING Vol. 69 

by equation (21) in terms of Y, and F is given by 
equation (19) for v == vm, the condition for minima 
becomes 

KmA =j + 3/4 = \a(n. - n0)/X) f(«,) (23) 

where f (2) is the pa th difference function given by 
equation (12), and the particular value of zm cor­
responding to the fringe numbered j is now de­
noted by Zj. 

For maxima the condition is a little more com­
plicated, but since the coefficient zm/^/2vm/ir be­
comes nearly constant after the first maximum, 
it is approximately t rue t ha t maxima obtain for 
cos vm — sin vm = 0, or 

fm = (J + 1/4) T 

which gives 

|a(». - W0)AI ffo) = j + 1/4 (24) 

for maxima. In the case of both maxima and 
minima the displacement of the fringe a t the plate 
is given by the usual equation (19) as indicated 
above 

Fj = {ab(n, - n0)/2\^Dt} e-*) (25) 

Here z\ represents the new wave optical "re­
duced height" in the cell corresponding to a given 
maximum or minimum of intensity a t the plate, 
and it is seen by comparison with equations (13) 
and (14) t ha t the present formulation has shifted 
Zj a little from its value predicted by the previous 
classical formulation.12 

Although the physical significance of z\ has 
now become obscure, in t ha t light reaches the 
fringe from all values of z, and not simply from Zj, 
this is of no practical consequence inasmuch as 
the physical significance of Zj is not needed in order 
to solve the equations for the diffusion coefficient. 

In Fig. 7, the positions of the maxima and min­
ima obtained from these simple equations (23), 
(24), and (25) are indicated by horizontal lines, 
and comparison with the positions given by the 
complete expression (22) indicates t ha t the simple 
formulations hold with a very high degree of pre­
cision except for the lowest maximum and mini­
mum. I t should be noted t ha t these formulations 
must break down for fringes close to the normal 
slit image, for two reasons. First , the parabolic 
curve fit for v versus z becomes increasingly poor 
as the normal slit image is approached, and second, 
the edge effects of the ends of the cell have been 
omitted by integrating to infinity. 

(12) Comparison of wave optical and geometrical optical formula­
tions for similar cases have also been found to lead to.a discrepancy 
of one quarter of a wave. Compare Mascart, "Traite d'Optique," 
Vol. I, Gauthiers-Villars FiIs, Paris, 1889, p. 398; Gouy, Ann. Chim. 
Phys., 24, 145 (1891); Gans, Ann. Physik, 47, 709 (1915); 
Jentzsch, "Handbook der Physik," Vol. XVIII , Julius Springer, 
Berlin, 1927, p. 200. Subsequent to the publication of his 1880 
note on the diffusion interference phenomenon, Gouy carried out 
several investigations into the propagation of light, and in the 
present reference treated very fully the quarter wave anomaly. 
It is conjectured that his failure to give a mathematical treatment 
for the diffusion optical phenomenon may have been caused by the 
inavailability of Stefan's theory for the diffusion process (ref. 8), 
which appeared only in 1879. 

I t is also noted t ha t the parabolic fit becomes 
poor for Y/Ct values approaching unity, and can­
not be expected to hold for Y/Ct values greater 
than unity. For this region of small z, v may be 
expanded in series 

v c* 2{ V? a(w„ - W0)Al (z(l - Y/Ct) - z3/3) (26) 

This expansion shows t ha t the v versus z curve 
can be transformed to give the 4>Y integral, equa­
tion (18), in the form of Airy integrals13 which 
have been tabulated 

J cos (ir/2){pu — us)du 
o 

For Y/ Ct values equal to or greater than unity, 
where the greatest contribution to the cosine in­
tegral comes from z values near zero, it suffices to 
substi tute directly for v its expansion in terms of z 
given by equation (26), giving for the amplitude 

cos (r/2)(pu — «3)d« (27) 

where p is defined by p = SA2 (1 — Y/Ct) and 
A = |4o(w, - n„)/3V^X11Z' 

For YI Ct values smaller than unity, the v versus 
z curves have maxima, which in general occur a t 
sufficiently large z values to make equation (26) 
inapplicable. But since the greatest contributions 
to the cosine integral, equation (18), occur a t these 
maxima, it is necessary to choose a cubic expres­
sion to fit the v function a t its maximum, rather 
than a t small z. If v is taken as v = g(hz — z3), the 
maximum is given by 

cto/cb = 0 = g(h - 3zi) 

so t ha t h = 3zm and g = vm/2z3
m. Hence we have 

V = ( 3 / 2 ) » m ( Z / z m ) - (»m/2)(8 / 2 m )» 

Making a change of variable by the definitions 

(zjm/2)(z/zm)a = ™3/2 and 3(»nA)V» = p 

and integrating from x = 0 to x = oo, we obtain 

0y = IKy/Wt «m/(i>/3)Vi j cos (ir/2)(pu - «3)d« 

(28) 
The intensities obtained from the Airy integrals 
for both regions are shown in Fig. 7. I t is noted 
t ha t for both the quadrat ic and the cubic types of 
curve fitting, the positions of maxima and minima 
agree very closely, and this lends confidence to the 
curve fitting procedures used in performing the 
integration.14 

The general procedure for the evaluation of dif­
fusion coefficients should now employ equations 
(23), (24) and (25) in conjunction with Table I, 
for fringes start ing with j = 1 and continuing to 
as high a value of j as leads to consistent spacing 
according to these equations. I t is recalled t ha t 
for the lowest maximum and minimum, denoted 
by j = 0, more complicated expressions (equations 

(13) Fletcher, Miller, and Rosenhead, "An Index of Mathematical 
Tables," Scientific Computing Service, Ltd., London, 1946; Hogner, 
Arkiv. Mat. Astron. Fysik, 17, No. 12, 37 (1923). 

(14) Compare Mascart, ref. (12), p. 400. 
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(22), (27) and (28)) are required for highest pre­
cision. 

Discussion 
Comparison of the position of the most de­

flected light, Y = Ct, based on the classical geo­
metrical equation (5) with the intensity diagrams 
calculated on the wave optical basis is made in 
Fig. 7. This comparison indicates that equation 
(5) is not exactly true. The error is greatest for 
the most downward deflected light, and this has 
the effect, in the schlieren optical systems6'15'1617 

of compressing the height of the peak. This is 
seen by reference to Fig. 7, since the region of 
maximum intensity in the lowest fringe would 
represent the location of the peak in a schlieren 
diagram, as obtained with a contrast plate. More­
over, the gradual falling off of intensity for this 
fringe indicates that the location of the peak will 
be uncertain, and will be particularly sensitive to 
the time of exposure. This error should lead to 
high values for the diffusion coefficient when cal­
culated by the height and area method3'18 and the 
inflection point method.5 However, the method 
of moments6 also gives erroneous results because 
the classical theory breaks down for the edges of 
the gradient curve. In the case of the scale 
method,6 where a small aperture at the lens masks 
off all but a narrow portion of the wave front aris­
ing from each scale line, it appears that the use of 
Wiener's equation4 may have somewhat greater 
validity. 

For a polydisperse system which yields symme­
trical diffusion curves, it can be shown readily that 
the application of equation (23) results in the 
weight average of the path difference function f (z). 
The diffusion coefficient obtained for the system 
by further application of equation (25) is a very 
complicated average value, however. A general-

(15) Philpot, Nature, 141, 283 (1938). 
(16) Longsworth, T H I S JOURNAL, 61, 529 (1939). 
(17) Andersson, Nature, 143, 720 (1939). 
(18) Longsworth, Ann. N. Y. Acad. Set., 41, 267 (1941). 

I. Nature of Recoil Excitations 
Nuclear reactions in general involve energies of 

at least 100,000 electron volts (2.3 X 109 cal./ 
mole). This energy usually is divided between 
two particles—the emitted light particle and the 
residual recoil heavy nucleus—according to the 
law of conservation of momentum. Table I sum­
marizes the results for the more common types of 
nuclear reactions. (In this Table, M is the mass 
of the recoil nucleus in ordinary units, m the mass 
of the light particle emitted, fi the mass of the 

(1) Paper given at Nuclear Symposium, Atlantic City Meeting, 
American Chemical Society, April 1946. 

ized treatment may make it possible to obtain 
better defined averages for such a system. The 
extension of the theory to the case where the diffu­
sion coefficient is concentration dependent has not 
been developed. 
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Summary 

A quantitative theory for the spacing and in­
tensity in the interference fringe system formed 
by focussing light from a horizontal slit through a 
diffusing boundary has been presented. Observa­
tion of the fringe displacement, in combination 
with the theoretical path difference function, Jhe 
optical constants of the system and time, permits 
the evaluation of the diffusion constant for ideal 
diffusion independently from each fringe. 

In the development of this theory by the meth­
ods of wave optics, small systematic errors in the 
schlieren optical methods are indicated, which set 
a limit to the precision attainable with such 
methods. 
MADISON, WISCONSIN RECEIVED MARCH 18, 1947 

bombarding particle if one is involved, and Ea is 
the energy of the a particle with a similar notation 
for other particles. In the case of beta radio­
activity, E0 is the upper energy limit of the con­
tinuous spectrum.) The derivations of these ex­
pressions are given in Appendix I. 

In general these energies are so large with re­
spect to chemical bond energies (1 to 5 electron 
volts) that there is little doubt that bond rupture 
will occur in nearly all cases. Suessla has called 
attention, however, to possibilities of inefficiencies 
in the dissociation processes in the case that the 

(la) H. Suess, Z. physik. Chem., B45, 312 (1940). 
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